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Abstract

Many hopes and much controversy have surrounded the
application of the maximum-entropy (ME) method to
accurate charge-density studies. This paper shows that
viewing such studies as an extension of Bayesian crystal
structure determination provides practical means of
fulfilling many of the hopes invested in the ME method,
while essentially eliminating its controversial aspects,
the latter being explained in terms of a number of
computational artefacts. The positional probability
distribution of scatterers having maximum entropy
relative to a given ‘prior prejudice’ is computed so as
to reproduce a set of phased structure-factor ampli-
tudes; core electrons can optionally be treated as a fixed
‘fragment’ and described using atomic core densities
derived from ab initio wave functions. Fragment and
prior-prejudice density distributions are computed by
fast Fourier transforms and are thermally smeared by
aliasing. These various algorithms have been imple-
mented within the BUSTER computer program. Model
studies on noise-free synthetic data sets for a-glycine,
silicon and beryllium show that all-electron calculations
give rise to artefacts when a uniform prior prejudice is
used, while valence-only calculations using valence
monopole priors are essentially free from artefacts.
The maximum-entropy approach is thus optimally
implemented by incorporating the prior knowledge of
the existence of sharp atomic cores in the form of a
fragment not subjected to entropy maximization. These
results contribute to settling the debate about the
putative existence of non-nuclear density maxima at
special positions for crystalline silicon and beryllium,
and prepare the ground for developing maximum-
likelihood multipolar refinement.

1. Introduction

While attempting to determine crystal structures, crys-
tallographers face various degrees of uncertainty,
depending on the amount of structural knowledge
already available before the diffraction data are
consulted: a variable proportion of information is
missing about the unmeasured structure-factor ampli-
tudes and phases. Correspondingly, the actual object
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referred to as ‘crystal structure’ spans a large spectrum
of different distributions (and map representations),
ranging from low-resolution macromolecular envelopes
to accurate electron-density maps.

In the past decade, one of us (GB) has outlined a
global approach to crystal structure determination that
recasts within a single inference scheme the process of
recovering missing information and allows various
crystallographic problems to be tackled making use of a
common computational strategy (Bricogne, 1984, 1988a,
1991b, 1997). This approach is based on the combined
use of structural models and maximum-entropy distri-
butions of scatterers, following the prescriptions of
Bayesian statistics.

Partial implementations of this Bayesian programme
(Bricogne & Gilmore, 1990; Bricogne, 1993a) have
already proved successful in overcoming the phase
problem in a variety of crystallographic contexts,
ranging from X-ray single-crystal diffraction for small
molecules (Gilmore et al, 1990) and macromolecules
(Carter et al., 1990; Xiang et al., 1993; Doublié et al.,
1994, 1995; Schiltz et al., 1997) to powder diffraction
(Gilmore et al., 1991) and electron diffraction (Dong et
al., 1992; Voigt-Martin et al., 1995).

In this paper, we report work on the first stages of
extending the Bayesian programme to accurate charge-
density studies based on single-crystal X-ray dif-
fraction data. These studies lie at the high-resolution
end of the phase uncertainty range, where a wealth of
prior phase information is already available from the
known spherical-atom structure for the crystal. The
residual phase uncertainty to be removed by the struc-
ture-determination process amounts in this case to a few
degrees at most, and is mainly due to the redistribution
of valence electrons in the chemical bonds.

We propose that accurate charge-density studies
be viewed as the late stages of the structure-deter-
mination process. Although a great deal of phase
information is present, the fine structure is missing
and can be recovered by means of a statistical
analysis of the diffraction data, just as is performed
in the early stages of the structure-determination
process. The phase uncertainty is again brought
down to the level warranted by data resolution and
completeness.
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We will show here that the same inference scheme
that is used to solve structures by the joint use of
structural models at atomic resolution and maximum-
entropy distribution of atoms can be extended to the
task of deriving a high-resolution charge-density distri-
bution: in this particular case, the process of structure
completion will make use of subatomic structural
models, namely of the partitioning of the atomic density
in core and valence contributions commonly used in
multipolar studies, and maximum-entropy distributions
of electrons.

Within this scheme, it becomes a straightforward
matter to obtain maximum-entropy valence-density
maps and the corresponding deformation-density maps.
The method can be applied to centrosymmetric and
noncentrosymmetric crystals. Once the implementation
is complete, the joint use of structural models and
maximum-entropy distribution of scatterers will also
allow flexible modelling of the valence-charge density
and simultaneous maximum-likelihood refinement of all
those parameters that appear in the model for the
substructure not subjected to entropy maximization.

The maximum-entropy method has been used in the
field of accurate charge-density studies for some time
now (see §2): it does possess the potential of overcoming
some of the limitations of traditional multipolar
modelling but great care has to be taken not to apply it
outside the range of validity of its own foundations. In
this paper, we present a rationale for the well known
drawbacks of the maximum-entropy method as applied
to charge-density studies, which have so far eluded
explanation.

After a brief discussion of the main sources of error
affecting the present-day implementation of multipolar
and maximum-entropy charge-density studies (§2), we
apply the Bayesian viewpoint to the same studies (§3). §4
investigates the main sources of bias connected to the
use of uniform prior-prejudice distributions. The basic
computational mechanism and its current state of
implementation within the computer program BUSTER
(Bricogne, 1993a) are outlined in §5. In the final part of
the paper, we describe the results of model studies for
crystalline silicon and beryllium. A novel algorithm for
sampling thermally smeared (‘dynamic’) model densities
on arbitrarily coarse grids, implemented in the course of
this work and in connection with the calculation of prior-
prejudice distributions, is described in Appendix A.
Table 1 lists abbreviations used in this paper.

2. MaxEnt charge-density studies: hopes and fears
2.1. Model bias in conventional charge-density studies.

The elimination and/or correction of systematic errors
in experimental data is still the primary concern in
charge-density studies based on high-resolution X-ray
diffraction data; when special care is taken to minimize
the errors, these experimental studies can achieve an
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Table 1. Table of abbreviations

IAM Independent-atom model
ME Maximum entropy
NUP Non-uniform prior-prejudice distribution

UP Uniform prior-prejudice distribution
Non-nuclear density maximum

accuracy better than 1% in the values of the structure-
factor amplitudes of the simplest structures (Larsen &
Hansen, 1984; Lu et al., 1993). The accuracy for small
molecular crystals, although more difficult to assess, is
reckoned to be of the same order of magnitude.

The challenge is then to achieve the same degree of
accuracy in the derived values of the experimental
electron density. Recent studies have shown that in
some cases this is indeed within the reach of the present-
day modelling techniques (Souhassou et al., 1992; Destro
& Merati, 1995; Flensburg et al., 1995; Iversen, Larsen,
Figgis & Reynolds, 1997). When the major sources of
experimental error have been corrected for, the typical
root mean square electron-density residual can reach
values _as low as 0.05e A™3, with extrema below
0.20 e A~ in absolute value. The observed residuals are
usually due to the errors in the experimental data but
high-resolution high-quality data sets can in some cases
bring to light bias from the model.

The main sources of model bias in multipolar density
studies are: the choice of exponents appearing in the
radial parts of the deformation functions, still ‘more of
an art than a science’ (Flensburg et al, 1995); the
insufficient radial flexibility in modelling valence-charge
density in metals, minerals (Nowack et al., 1991; Brown
et al, 1993) and coordination complexes (Iversen,
Larsen, Figgis & Reynolds, 1997);} and the limited order
of the spherical harmonics used, which do not usually
extend past the hexadecapolar level (I = 4). The latter
limitation is not always imposed by the quality of the
data, and can be due to the need to preserve an
adequately high observations/parameters ratio. Only
two multipolar studies published to date used spherical
harmonics with /> 4: graphite (Chen et al.,, 1977) and
crystalline beryllium (Stewart, 1977). In the latter work,
the most significant contribution to the valence density
was indeed shown to be given by a pole of order / = 6.

We also recall here that all current implementations
of structural refinement, when applied to noncentro-
symmetric crystals, violate one of the basic principles in
least-squares refinement, namely that all quantities
appearing in the equations should be either constants,
parameters in the model or observations. Structure-
factor phases, which cannot be measured, are treated as

+ Similar evidence of the inability of single-exponential deformation
functions to account for all the information present in the observations
have also been found in studies of organic (Howard et al., 1995;
Roversi, Barzaghi, Merati & Destro, 1996) and inorganic (Souhassou et
al., 1995) molecular crystals.
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constants at each cycle of refinement and assumed equal
to the calculated values at the previous cycle, but do
undergo changes from one cycle to the next. This
problem has recently been brought to general attention
in the context of refinement of macromolecular struc-
tures, where inappropriate treatment of phases can
result in a significant source of variance being absent
from the least-squares variance—covariance matrix and
in phase bias being locked in by the use of an incomplete
model (Bricogne & Irwin, 1996).

In practice, charge-density studies can usually rely on
large observations/parameters ratios, which overcome
most of the phase bias and allow for accurate results for
noncentrosymmetric crystals as well. Nonetheless, it is
well known that odd-order multipoles invariant under
crystal class symmetry can in some cases give rise to
serious difficulties in least-squares refinement of
noncentrosymmetric structures (Terpstra et al., 1993; El
Haouzi et al., 1996; van Beek et al., 1996). Recourse to
maximum-likelihood multipolar refinements would
allow the unbiased estimation of all parameters entering
the electron-density model.

2.2. MaxEnt charge-density studies

Because of the limitation intrinsic to the adoption of
an explicit parameterized density model, many crystal-
lographers have been dreaming of disposing of such
models altogether. The thermally smeared charge
density in the crystal can of course be obtained without
an explicit density model, by Fourier summation of the
(phased) structure-factor amplitudes, but the resulting
map is affected by the experimental noise, and by all
‘series-termination’ artefacts that are intrinsic to Fourier
synthesis from an incomplete finite-resolution set of
coefficients.

A second approach, which is not subject to the
limitations imposed by the choice of a parameterized
model of the density, is the maximum-entropy (also
abbreviated MaxEnt) method. The appeal of the
method is evident when counting the increasing number
of applications to charge-density studies that have
appeared in the crystallographic literature in the last ten
years: see among the most recent ones Restori &
Schwarzenbach (1995), Papoular e al. (1996), Takata
& Sakata (1996), and Yamamoto et al. (1996), and
the works cited in relevant sections of reviews on
charge-density studies (Spackman & Brown, 1994)
and on maximum-entropy methods in crystallography
(Gilmore, 1996). In principle, MaxEnt maps are not tied
to any particular multipolar expansion or radial defor-
mation function and can mirror any degree of angular
and radial deformation that is present in the observa-
tions.

All of the studies published so far have been aiming at
the reconstruction of the total electron density in the
crystal by redistribution of all electrons, under the
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constraints imposed by the maximum-entropy require-
ment and the experimental data.f The authors usually
invoke the maximum-entropy principle of Jaynes
(1957a,b, 1968, 1983), although the underlying connec-
tion with the structural model, known as the random
scatterer model, is seldom explicitly mentioned.

According to the latter model, the crystal is described
as formed of a number of equal scatterers, all randomly,
identically and independently distributed. This simpli-
fied picture, and the interpretation of the electron
density in terms of a positional probability distribution
to generate a statistical ensemble of structures, lead to
the selection of the map having maximum relative
entropy with respect to some prior-prejudice distribu-
tion m(x) (Bricogne, 1984, 19884, 1991c¢).

When it is used to specify an ensemble of random
structures, in the sense mentioned above, the MaxEnt
distribution of scatterers is the one that rules out the
smallest number of structures, while at the same time
reproducing the experimental observations for the
structure-factor amplitudes as expectation values over
the ensemble. Thus, provided that the random scatterer
model is adequate, deviations from the prior prejudice
(see below) are enforced by the fit to the experimental
data, while the maximum-entropy principle ensures that
no unwarranted detail is introduced. This seemingly
compelling justification for MaxEnt must however be
subjected to careful scrutiny, as will now be performed.

2.3. Test studies with the MaxEnt method

Since 1993, a number of studies have been devoted to
assessing the limitations of the maximum-entropy
method when applied to charge-density studies, espe-
cially in conjunction with uniform prior-prejudice
distributions. We summarize here the main points that
have arisen from these model studies:

(i) Uneven distributions of residuals. The MaxEnt
calculations in the presence of an overall x> constraint
suffer from highly nonuniform distributions of residuals,
first reported and discussed by Jauch & Palmer (Jauch &
Palmer, 1993; Jauch, 1994); the error accumulates on a
few strong reflections at low resolution. The phenom-
enon is only partially cured by devising an ad hoc
weighting scheme (de Vries et al, 1994; Iversen et al.,
1995; Yamamoto et al., 1996). Carvalho et al. (1996) have
discussed this topic, and suggested that the recourse to
as many constraints as degrees of freedom would cure
the problem.

(i) Dynamic range of the density and low-density
regions in the crystal. In their work cited above, Jauch &
Palmer first pointed out the inadequacies of the method
in dealing with densities having a large dynamic range.
Additional evidence of these inadequacies has come

t After acceptance of this paper, the authors became aware of
valence-only MaxEnt reconstructions contained in the doctoral thesis
of Garry Smith (1997).
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from Papoular, Vekhter & Coppens, who worked on
observed and simulated data sets for «-glycine
(Papoular ef al., 1996). In the latter study, when all
electrons were redistributed with a single-channel
approach, the density of the H atoms was clearly flat-
tened and features below 2e A~ were in general
deemed to be scarcely significant because the large
dynamic range of the total density reduced the sensi-
tivity level. A two-channel calculation,? fitting structure
factors calculated from the deformation density, did not
suffer from the same limitations owing to the reduced
dynamic range of the density to be reconstructed.

Errors in the low-density regions of the crystal were
also found in a MaxEnt study on noise-free amplitudes
for crystalline silicon by de Vries, Briels, Feil, te Velde &
Baerends (1996). Data were fitted exactly, by imposing a
standard uncertainty of 5 x 107* on the synthetic
structure-factor amplitudes. The authors demonstrated
that artificial detail was created at the midpoint between
the Si atoms when all the electrons were redistributed
with a uniform prior prejudice; extension of the reso-
lution from the experimental limit of 0.479 to 0.294 A
could decrease the amount of spurious detail but did not
reproduce the value of the reflection F(222), which had
been left out of the data set fitted.

(iii) Dependence of results on the prior-prejudice
distribution. Nonuniform prior-prejudice distributions
(NUP for short in what follows) were initially intro-
duced by Jauch & Palmer by centring three-dimensional
Gaussian functions at the nuclear positions (Jauch &
Palmer, 1993). These authors found that the low-density
regions of the crystal changed significantly upon intro-
duction of the nonuniform prior prejudice, but the
uneven distribution of errors persisted.

Iversen et al. in their MaxEnt study of crystalline
beryllium were the first to make use of nonuniform
prior-prejudice distributions calculated by superposition
of thermally smeared spherical atoms. More recently, a
superposition of thermally smeared spherical atoms was
used as NUP in model studies on noise-free structure-
factor amplitudes for crystalline silicon and beryllium by
de Vries, Briels & Feil (1996) The artefacts present in
the densities computed with a uniform prior-prejudice
distribution were shown to disappear upon introduction
of the nonuniform prior prejudice, but no quantitative
measure of the residual errors was given.

Finally, recent work of Iversen, Jensen & Danielsen,
(1997) has carefully examined the bias associated with
the accumulation of the error on low-order reflections
and attempted a correction of the MaxEnt density. The
study, based on a number of noisy data sets generated
with Monte Carlo simulations, has produced a less

+ Two-channel MaxEnt techniques have also been used in the study of
magnetization and spin densities (Papoular & Gillon, 1990; Zheludev
et al., 1995) and to interpret unpolarized neutron diffraction data
(Sakata et al., 1993).
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nonuniform distribution of residuals and has given a
quantitative estimate of the bias introduced by the
uniform prior prejudice.

3. The Bayesian viewpoint on charge-density studies

None of the studies mentioned in §2 has explicitly
addressed the main issue of the redistribution of core-
electron densities under maximum-entropy require-
ments in the absence of high-resolution observations.
This is indeed the key to explaining the unsatisfactory
behaviour encountered so far in the applications of the
method to charge-density studies.

The maximum-entropy method is qualitatively
correct only when used as a method of evaluation of the
joint probability distribution of structure factors, i.e.
when it is equivalent to using the saddlepoint method
(Bricogne, 1984). The assumption of large numbers of
identical and independently distributed random incre-
ments is vital (only under this assumption can one derive
combinatorial multiplicities that have the form of
multinomial coefficients, from which the connection
with entropy follows by Stirling’s approximation).
Trouble will follow whenever the maximum-entropy
method is used as a magical regularizing or extra-
polating device in situations where this assumption is
devoid of physical justification.

3.1. Maximum entropy and joint probability distributions
of structure factors.

In the context of macromolecular structure determi-
nation, the maximum-entropy method has been used as
part of a procedure to calculate joint probabilities of
structure factors from statistical models in which:

(a) as much as possible of the prior knowledge of the
structure is incorporated;

(b) the rest is describable as being made up of other
random constituents, distributed in a way for which an
initial guess is available, but for which a better model is
to be built by forcing a tighter fit to the observations.
The maximum-entropy method (i.e. the saddlepoint
method) is excellent at giving good values of these joint
probabilities and of conditional probabilities because it
is being used in its natural context. It cannot be expected
to give an unbiased final answer because by its very
essence it knows no chemistry (i.e. the atoms or elec-
trons or other ‘gremlins’ are assumed to be indepen-
dent).

The way to proceed towards a sensible answer with
the maximum-entropy method is to use the joint and
conditional probabilities it is so good at calculating to
test various hypotheses against one another, by means of
likelihood criteria calculated from these distributions.
Typically, we test a hypothesis (H1) against a null
hypothesis (HO). Hypothesis H1 stipulates that the
structure consists of a particular (physically or chemi-
cally correct) substructure, with the rest of the atoms or



PIETRO ROVERSI, JOHN J. IRWIN AND GERARD BRICOGNE

electrons distributed randomly and independently of
each other; while the null hypothesis (HO) stipulates that
all the atoms (including those of the putative substruc-
ture) are randomly distributed.

The distributions of random constituents are only
allowed to be as nonuniform as is strictly necessary to
produce the desired degree of fit to the observations,
since they are built by the maximum-entropy method.
The latter is also used to deduce the characteristics of
the implied joint distributions of structure factors from
which likelihoods are calculated (Bricogne, 19884,
1991c).

In the scheme outlined above, the maximum-entropy
method is used only to do what it does best, namely
handle random distributions of a large number of
independent constituents (the physics-free or chemistry-
free part of the model at each stage of the guessing
game). A physically or chemically valid interpretation of
the data is thus extracted by sequentially testing
hypotheses, the likelihoods of which involve the
maximum-entropy method in the description of the still-
random part of the model. The claims of the maximum-
entropists that the MaxEnt reconstruction of electron
density always gives a universal bias-free intermediate,
from which all relevant hypotheses can be subsequently
tested, are not to be believed.

3.2. The joint use of ME distributions and structural
models

If any prior knowledge that could be put in the prior
prejudice is withheld, the maximum-entropy results
cannot be expected to reproduce it, since it represents
improbable collusions between supposedly independent
‘gremlins’ which the ME method is precisely designed to
rule out. Unphysical prior-prejudice distributions can
bias maximum-entropy maps by building into them too
much ignorance, which often cannot be cured by the
limited information contained in the observations; one
must use the method only when this ignorance has been
minimized in a genuine fashion.

For these reasons, substructures that scatter well
beyond the experimental resolution should be left out of
the subset of scatterers distributed at random. The data
sets commonly collected for charge-density studies
rarely extend beyond 0.4 A resolution, but scattering
from the atomic core does extend well beyond this limitf.

T When in-house low-temperature studies are performed, the
maximum resolution is imposed by data-collection geometry and
fall-off of the scattered intensities below the noise level, rather than by
negligible high-resolution structure-factor amplitudes. Use of Ag K«
radiation would for example allow measurement of diffracted
intensities up to 0.35 A for amino acid crystals below 30 K (Destro,
1998). Similarly, model calculations show that noise-free structure
factors computed from atomic core electrons would be still nonzero up
to 0.1 A. The use of synchrotron radiation is likely to allow accurate
high-order data measurements that enable the study of atomic core
deformations.
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It is therefore clear that MaxEnt redistribution of all
electrons, using a uniform prior prejudice and carried
out in the absence of very high resolution diffraction
measurements, cannot be expected to reproduce a
physically acceptable picture of atomic cores. The
reconstruction of total electron densities from limited-
resolution diffraction measurements amounts to a
misuse of the maximum-entropy method, especially
when the prior prejudice is uniform. Any experimental
uncertainty in the observations used as constraints will
be taken advantage of by the maximum-entropy
method to spread the electrons more evenly than they
really are by virtue of the quantum laws governing
atomic structure. In a sense, one is asking too much
from the observations (i.e. to tell one that the crystal is
made up of atoms and that bonds of different strength
and nature are present in between atoms) from too poor
an initial guess (ie. that the electrons might well be
spread out evenly everywhere in the cell without inter-
acting).

The multichannel Bayesian formalism is not
restricted to handling all components of a model
exclusively through the ME method. The contribution
from the core electrons, which is not completely
defined from the diffraction data alone, but about
which knowledge is available from other sources (e.g.
quantum mechanics), should be treated through a
conventional parameterized model. The contribution
from the valence electrons, on the other hand, can be
described in terms of a distribution of electrons for
which a sensible prior prejudice m(x) can be provided
on the basis of a null hypothesis (e.g. a valence
procrystal). To this prior prejudice some ‘minimal
readjustment’ must be applied to fit the observations.
This valence component is therefore amenable to a ME
treatment.

More subtle prior knowledge that cannot be put into
the prior-prejudice distribution concerns ‘stereo-
chemistry’, or more generally specific rules governing
local structure that violate the assumption of indepen-
dence. This is where the sequential inference procedure
described above takes over, the maximum-entropy
method being used only on the unstructured (‘random’)
part of the model.

This computational strategy would be the analogue of
detecting stereochemically correct fragments and opti-
mizing their placement during a crystal structure solu-
tion. The maximum-likelihood refinement of those
multipolar parameters is superior to least-squares
refinement in that it is capable of taking into account a
rather elaborate description of the causes of the current
discrepancies from the observations, namely a possibly
rather complicated mixture of nonuniformly distributed
‘gremlins’ that have not yet been fully identified; this is
considerably more versatile than a least-squares residual
based purely on experimental errors or even on propa-
gation of errors in the model parameters.
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The structured approach outlined above extends the
methodology of crystal-structure determination to the
atoms themselves, with quantum-mechanically based
functional parameterizations playing the role of data-
bases of chemically correct fragments.

3.3. The ME equations and density: a brief reminder

The general computational mechanism of Bayesian
crystal-structure determination in the presence of
various sources of partial phase information was first
outlined by Bricogne (1988a); a status report, now
somewhat dated, about its actual implementation for a
number of crystallographic problems was given by the
same author (Bricogne, 1993a).

In this brief expository section, we recall the
maximum-entropy equations and the functional form of
the ME probability distribution, mostly to introduce the
terminology and notation which will be used in §4.2 and
in Appendix A to discuss the crucial issues of sampling
and aliasing. The formulation is the one obtainable for
randomly and independently distributed electrons
[whose prior-prejudice probability distribution will be
denoted as m(x)], in the presence of a subset of electrons
whose distribution is assumed to be known. The latter
structure will be denoted as ‘fragment’.

Let us consider a collection H = (h, h,, ..., h,,) of
symmetry-unique reflections. We denote by Fll the
‘target’ phased structure-factor amplitude for reflection
h; and by F, "¢ the contribution from the known
substructure to the structure factor for the same reflec-
tion. We are interested in a distribution of electrons g(x)
that reproduces these target phased amplitudes, in the
sense that, for each structure factor in the set of obser-
vations H,

F;‘; — Ffrag + F;f;“dv (1)

where the contribution Fi*™ of the random scatterers is
related to g(x) by

Fff]‘“d = nf|G]| {q(x) exp(2mih; - x) &’x. )
In this expression, |G| is the number of elements of the
space group of the crystal and f and n are the scattering
power and number of the random scatterers in the
asymmetric unit, respectively.

Since all the scatterers are identical, their structure
factors can be normalized to unitary structure factors, as
is always the case for homogeneous structures of normal
scatterers (Bricogne, 1988a):

Uy = B/ (nf|G)) = (Fy, = Fy™)/(nfIG]). (3)

Now we make use of the invariance of g(x) under
symmetry operations of space group G-

q(x) = (1/1G1) ;;q(Rgx +1,) 4)
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and of the group structure of G, to rewrite equation (2)
as

U fq(x){(1/|G|) > expl [27tih; - (Rx + t )]} d’x.

geG
®)

The quantity in curly brackets in equation (5) is called
the constraint function C;(x).

To deal with all the observations h; € H in compact
form, the unitary structure-factor components can be
arranged in a vector U™ and the components of the
constraint functions collected in a vector C(x). The ME
distribution of electrons gME(x) then takes the form

(Jaynes, 1957a, 1968)

g"E(x; 27) = [m(x)/Z(A)] exp[4” - C(x)],  (6)
where Z(4) is a normalizing factor for g(x):
Z(2) = [ m(x)exp[4 - C(x)] d’x (7)
4

and the saddlepoint 4 = A" is computed by solving the
maximum-entropy equations:

V,(log Z(2)) = U™ ®)

The name of the distribution is due to the fact that the
saddlepoint A* can also be obtained as the vector of
Lagrange multipliers needed to find the distribution
g = qME for which the relative entropy S

S,(q) =

n’

— [ a(x)loglg(x)/m(x)] d’x, )
v

is at a maximum (see Bricogne, 1984, and references
therein).

4. The role of the prior-prejudice distribution

It appears from formula (5) that the prior-prejudice
distribution m(x) is a fundamental quantity in the
calculation of the ME distribution of electrons, in that
the latter is obtained by modulation of m(x). In all those
regions where the modulating factor required to fit the
observations is unity, the final picture is therefore always
going to coincide with the prior expectation itself. For
this reason, it is of the greatest importance that some of
the prior information available about the system under
study be conveyed into the calculation by means of a
sensible choice for the prior-prejudice distribution.
This is especially true when the observations are not
informative enough, as is the case for total charge-
density reconstruction based on finite-resolution X-ray
diffraction data. Even when valence electrons only are
redistributed at random, the shell structure of the atomic
densities might still require high-order components that
are past the experimental resolution (Lu et al, 1993).
The choice of the uniform prior-prejudice distribution
amounts to ignoring the presence of atoms in the crystal
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so that its property of being ‘maximally noncommittal’ is
no longer a virtue but a vice: it is in fact foo noncom-
mittal, because prior knowledge which will later be used
to criticize the results has not been made available to the
ME calculation.

Not only is the choice of a uniform prior-prejudice
distribution not sensible; it also exposes the calculation
to two main sources of computational errors, both
connected with the functional form of the ME distri-
bution of scatterers, and with its numerical evaluation:
namely series-termination ripples and aliasing errors in
the numerical sampling of the exponential modulation
of m(x). The next two sections will illustrate these two
essential points in some detail.

4.1. The spectrum of the exponential modulation of m(x)

As already pointed out by Jauch (1994), the series
appearing in the exponential factor that modulates m(x)
in equation (5) has a finite number of terms and can
therefore give rise to series-termination artefacts. In
particular, although the exponentiation will ensure
positivity of the resulting density, series-termination
ripples will be present in the reconstructed map when-
ever the spectrum of the modulation required by the
observations extends significantly past the resolution of
the series appearing in the exponential. This in turn will
depend both on the ‘true’ density whose Fourier coef-
ficients are being fitted and on the choice for the prior
prejudice.

The phenomenon can be illustrated by considering a
model density g(x) from which diffraction data can be
computed at arbitrarily high resolution. The (normal-
ized) exponential factor needed to reconstruct g(x) by
ME modulation of a chosen prior-prejudice distribution
m(x) can be written

[1/Z(A)]exp[4 - C(x)] = g(x)/m(x). (10)

The series in the exponential is called w: w(x) = 4 - C(x).

Fourier analysis of the logarithm of the ratio
q(x)/m(x) can now inform us about the extent to which
the finite resolution of the observations fitted is likely to
affect the ME reconstruction, depending on the choice
for the prior prejudice. The better a guess m(x) is, the
smaller the amplitudes of the Lagrange multipliers will
be. Finite-resolution effects will be negligible when the
use of a good nonuniform prior prejudice keeps the size
of the Lagrange multipliers to a minimum.

Fig. 1 shows the average strength of the Fourier
coefficients of log[g(x)/m(x)], with g(x) a multipolar
synthetic density for a-glycine at 23 K and two different
prior-prejudice distributions m(x). It is clear that the
exponential needed to modulate the uniform prior still
has Fourier coefficients larger than 0.01 past the
experimental resolution limit of 0.436 A. Any attempt at
fitting the corresponding experimental structure-factor
amplitudes by modulation of the uniform prior-preju-
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dice distribution will therefore create series-termination
ripples in the resulting ME distribution.

The exact amount of error introduced cannot imme-
diately be inferred from the strength of the amplitudes
of the neglected Fourier coefficients because errors will
pile up in different points in the crystal depending on the
structure-factor phases as well; to investigate the errors,
a direct comparison can be made in real space between
the ME map and a map computed from exponentiation
of a resolution-truncated ‘perfect’ w map, whose Fourier
coefficients are known up to any order by analysing
loglg(x)/m(x)].

In particular, if the w map suffers from an error Aw
due to its finite resolution:

@™ (x) = 2 - C(x) + Aw(x), 1)
g™ (x) = q(x) + Ag(x)
= [m(x)/Z(A)] explo(x) + Aw(x)], (12)

the error in the final ME map will be proportional to the
density itself:

Aq(x) = g(x){exp[Aa(x)] — 1} ~ g(x) Aw(x)  (13)

for Aw(x) < 1. Errors are therefore enhanced in high-
density regions.

4.1.1. a-Glycine ME valence density from noise-free
data. To check this prediction, a number of ME charge-
density calculations have been performed with the
computer program BUSTER (Bricogne, 1993a) on a set
of synthetic structure factors for a crystal of «-glycine at
23 K. A multipolar fit up to the hexadecapolar level was
carried out with the computer program VALRAY

107¢ . . . 1
10tk 3
T oL ]
= :
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E] [
= g
m(x) = UP \\\\v
\ﬁ
2] —-mm- m(x) = NUP )
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Fig. 1. Amplitudes of the Fourier coefficients of log[g(x)/m(x)] in
resolution bins for a-glycine at 23 K. g(x): total model density from
a multipolar fit to 23 K diffraction data (Destro, 1998). Solid line:
m(x) uniform distribution. Dashed line: m(x) core and valence
monopoles. The vertical bar marks the experimental resolution limit
0.436 A.
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(Stewart & Spackman, 1983) against a set of 3822

experimental structure-factor amplitudes up to 0.436 A

resolution (Destro, 1998); a set of 1500 synthetic struc-

ture factors,f complete up to a resolution of 0.582 A,

was calculated from the resulting multipolar expansion
model

o (%)

The ME valence density for a-glycine has been
calculated targeting the multipolar structure-factor
phases as well as the amplitudes (the space group of the
structure is centrosymmetric, P2, /n). The core density
has been kept fixed to a superposition of atomic core
densities; for those runs that used a nonuniform prior-
prejudice distribution m(x), the latter was computed
from the superposition of atomic valence-shell mono-
poles g"4M(x); both core and valence monopole func-
tions are those of Clementi (1965), localized by Stewart
(1980); the positional, displacement and electronic
population parameters used for the fragment and NUP
procrystal densities were those of the multipolar model
from which the data were calculated. Further details
about the computational strategy are found in §5.

The dynamic range of the «-glycine model valence
density at this temperature is ~2500; this fairly high
value is mainly due to the sharp increase of the valence
monopole functions of O atoms at approximately
0.196 A from the nucleus, and to the presence of low-
density intermolecular reglons (the minimum for this
model density is 0.0024 e A™>).

(i) Uniform prior prejudice. Fig. 2(a) shows the model
deformation density in the plane of the carboxylate
moiety. Fig. 2(c) shows the ME deformation density in
the same plane, calculated from a ME distribution
obtained from a uniform prior prejudice for the valence
electrons; the deformation map has been calculated by
subtracting from the ME map the procrystal valence
density ¢'AM(x) after the BUSTER job had converged.

Already from the comparison between Figs. 2(a) and
(c) it is apparent that the reconstruction is unsatisfac-
tory; Fig. 3(b) shows the residual map, obtained by
subtracting the model valence density from the ME map.
The valence dens1ty is affected by errors up to 26%
(around +1.7 ¢ A3, exceeding the largest contour
level) around the O atoms.

To check for the origin of these errors, a ‘perfect’
valence w map was computed from the model valence
density; its spectrum was truncated at the same resolu-
tion used for the ME calculation; the valence w map was
then resynthesized from this resolution-truncated set of
Fourier coefficients and exponentiated back. The
valence residual map for this density is shown in Fig.
3(c); the errors around the O atoms in Figs. 3(b) and (¢)

+ The choice of the number of reflections was dictated by the limited
number of observational constraints that can be handled when solving
the MaxEnt equations by means of the duality algorithm; the more
recent implementation of a different algorithm that handles measure-
ment errors (Roversi ef al., 1998) has now allowed BUSTER to deal
with up to 10 000 independent diffraction amplitudes.

ACCURATE CHARGE-DENSITY STUDIES

have the same shape; this is a strong indication that
these do indeed correspond to Fourier-truncation
ripples in the valence w map.

We stress here that any low-temperature valence
density for a small organic molecule will have a
comparably high dynamic range so that even valence-
only ME studies will always be likely to need a non-
uniform prior prejudice if truncation ripples are to be
avoided.

(i) Nonuniform prior prejudice. Fig. 2(b) shows the
ME deformation density [see formula (26)] in the
carboxylate plane of a-glycine, from a BUSTER calcu-
lation that used a nonuniform prior prejudice of ther-
mally smeared valence monopoles.

The dynamic range of the exp(w) map is reduced to a
value of ~14 when a nonuniform prior prejudice of
spherical valence monopoles is used: as a consequence,
the size of the Lagrange multipliers is reduced by
between one and two orders of magnitude and the error
due to serles truncation in the ® map is less than
0.2 ¢ A~ in absolute value everywhere in the cell (Fig.
3a), the . m s. deviation from the model being as low as
001 e A3

4.2. Numerical sampling of the exponential modulation
of m(x)

A second major source of computational difficulties
associated with uniform prior-prejudice distributions is
connected with the extremely fine sampling grids that
are needed to avoid aliasing effects (Brigham, 1974) in
the numerical Fourier synthesis of the modulating factor
in (5). To predict the dependence of aliasing effects
upon the prior prejudice, we need to examine more
closely the way the ME distribution of scatterers is
actually synthesized from the values of the Lagrange
multipliers 4. We recall that an equivalent analysis was
carried out by Bricogne (1984, Section 3) to illustrate the
phase extrapolation power of exponential modelling in
the context of direct methods.

First, we rewrite the constraint functions appearing in
the observational equations (5) so as to separate the
effects of the amplitude and of the phase of the residual
target structure factor:

Urand |Urand} exp(le (14)
Multiplication of the observational equations (5) by a
factor exp(—ig;) leads to the modified constraint func-
tions:

t The value of the r.m.s. deviation from the reference density can be
deceptively low because in the intermolecular regions the model
density is virtually the same as the one made of spherical-valence
shells, which was used as a nonuniform prior prejudice. The agreement
between the ME map and the reference model is very close in those
regions.
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Ci(x) = (1/IG|) Y_ exp[2mih; - (R,x +t,) — ig)].

geG

(15)

Taking the real and imaginary parts of the left- and
right-hand sides of the newly rewritten observational
equations, one obtains:

(16)

17)

[a®RC)} d'x = [Up|
|4

[ a®{Cx)} d*x =0
|4

Correspondingly, we introduce symbols for the ampli-
tude «; and phase 6; of each complex Lagrange multi-
plier A;: A; = k;(cos 0; + isin6,).

With this choice of constraint function and Lagrange
multiplier, we can rewrite formula (5) and express the

ME distribution of electrons as:
g"E(x) = [m(x)/Z(k, 0)] exp { ZK [cos(0)R{C}

+sin(6)3(C))] } . (18)
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The sum over symmetry operations in formula (15) can
be rewritten by considering the effect of multiplying
vector h; by the rotation matrices R,. The collection of
distinct reciprocal vectors hR, is called the orbit of
reflection h;; I; is the set of symmetry operations in G
whose rotation matrices are needed to generate the
orbit of h;; |I';| denotes the number of elements in the
same orbit (Bricogne, 1993b).

The real part of the constraint function can be written

MC} = (1/IG|) X_ cos[2mh; - (R,x +t,) — ¢)]

geG

= (1/IT;]) 3_ cos[2nh; - (R x +t,) — ¢]] (19)
ye[‘]

and a similar expansion holds for the imaginary part.
Substitution of (19) within (18) gives

q""(x) = [m(x)/ Z(x, 0)] exp { 2 2 (/1T

jover;

x cos[2rh; - (R x +t,) — wj]}, (20)

(@) Q)

Fig. 2. a-Glycine. Dynamic valence deformation density in the COO™ plane. (a) Agm9%!(x): model dynamic valence deformation density. (b)
AgME, (x): maximum-entropy valence-deformation density [see formula (26)], obtained by modulating a nonuniform prior of spherical-valence

shells: m(x) = giaM(x). () gY¥E(x) —

0.075¢ A7

¢""M(x): deformation density computed by subtracting the spherical valence-shell density from the
maximum- entropy valence map calculated with a uniform prior. Map size: 2.0 x 40 A. Contour levels: from —1.0 to 1.0e A~>
, dashed negative contours, zero contour omitted. Crosses indicate nuclear positions of the atoms defining the section.

, step
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where i, = ¢, + 6. This is the actual formula to
compute the ME distribution by numerical Fourier
synthesis followed by exponentiation. As with all
Fourier series, aliasing errors can occur when the Fourier
coefficients extend very far into reciprocal space if the
grid upon which the density is sampled is not fine
enough (Bricogne, 1993b).

To assess the extent to which the exponentiated
Fourier series has appreciable Fourier amplitudes, and
set the sampling grid accordingly, further development
of formula (20) is needed. We first rewrite

g (x) = [m(x)/ Z(x, 0)]H H exp{(x;/|T1)

j=1yerl;

x cos[27h; - (R, x +t,) — ]}, (21)

Expanding each of the exponential factors in a series of
modified Bessel functions, the ME distribution can be
written

ACCURATE CHARGE-DENSITY STUDIES

ME(x) = [m(x)/ Z(x. 0)]
<1111 (Io(x,/|rj|)+2il 1,(,/IT)

j=1yerl;

x cos{n[27h; - (R,x +t,) — 1//]-]}>. (22)

When the prior prejudice m(x) is uniform, some of the
Lagrange multiplier amplitudes are large (of the order
of unity or greater). This is especially the case when
sharp details are present in the density to be recon-
structed and not in the prior prejudice chosen. For a
given argument z, the ratio [,(z)/I,(z) remains
substantial until n exceeds z [see Fig. 4; the curve
1,(2)/1,(z) for n = 1 was also plotted in Bricogne (1984,
Fig. 1)], so that large values of the Lagrange multiplier
amplitudes x will give rise to appreciable high-resolu-
tion coefficients in the Fourier series in (22).

This in turn will require very fine sampling grids along
each crystallographic direction to avoid aliasing effects
when the density is synthesized. The size of the arrays
needed for the Fourier sampling of ¢gME(x) would

(a)

©

Fig. 3. a-Glycine. Valence residual dynamic density in the COO™ plane. (a) ghp(x) — q"“’del(x) valence residual dynamic density for the

maximum-entropy calculation with a nonuniform prior of spherical-valence shells. (b) Mg (x) —

the maximum-entropy calculation with a uniform prior. (c) exp[wg";gzd

g%l (x): valence residual dynamic density for

(x)] — gm9d!(x): valence residual dynamic density obtained subtractmg

the valence model density from the exponentlated and 0.582 A-truncated valence @ map (see text). Contour levels: from —1.0to 1.0 e A3 3 (a)

step 0.05 e A3
indicate nuclear positions of the atoms defining the section.

; (b) and (c) step 0.10 e A3, Dashed negative contours, zero contour omitted. Map size and orientation as in Fig. 2. Crosses
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therefore easily exceed ten million locations for all-
electron runs on low-temperature structures. It is clear
that ME distributions of scatterers that contain atomic
cores, when obtained by modulation of a uniform prior
prejudice, are bound to be spoiled by aliasing effects,
unless allowance is made for prohibitively large amounts
of memory space.

When the reconstruction of the density is carried out
by modulation of a prior prejudice of spherical atoms,
only the deformation features have to be accom-
modated; this can be accomplished relatively easily in
that they are usually smooth so that the Lagrange
multipliers are usually below 0.01 in modulus or even
smaller for valence-only runs. No aliasing problems then
occur in the synthesis of gME(x).

5. Computational mechanism

In this section, we examine more closely the actual
computational mechanism that allows the calculation of
ME distributions of electrons from high-resolution
X-ray diffraction data, as implemented in the computer
program BUSTER. The general structure of the
program has been described by Bricogne (1993a); we
therefore briefly recall here only those aspects that are
relevant to the application to charge-density studies. In
particular, the communication to BUSTER of various
quantities calculated from subsets of electrons have
been accomplished by means of an interface to the
computer program VALRAY (Stewart & Spackman,
1983), thus making optimal use of the built-in capability
of the multipolar formalism to partition atomic densities
between core and valence contributions.

The first implementation described here is restricted
to the case of absolute-scale noise-free diffraction data
without anomalous-dispersion contributions. Attention
will be confined to the construction of the ME distri-
bution of scatterers based on a set of experimental
amplitudes, the trial phases attached to them and the

()W yzn

0.9

Fig. 4. Ratio 1,(2)/1,(2)-
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currently available prior information. Phase hypothesis
generation and maximum-likelihood refinement of
phases, especially important to adequately treat
noncentrosymmetric structures, will be dealt with in a
subsequent paper.

5.1. Data preparation and incorporation of prior
information

5.1.1. Initialization stage. Observed values |F*| for the
structure-factor amplitudes on an absolute scale are
read together with the estimates for their error variances
and with target values for the phases. The latter are
encoded in Hendrickson-Lattman phase probability
coefficients (Hendrickson & Lattman, 1970), which will
make it possible to deal with acentric structures.

The number n of random scatterers in the asymmetric
unit is declared in the input together with their scat-
tering power f. When a fragment of core electrons is
present, the number of scatterers in the random part and
the number of scatterers in the fragment must consis-
tently add up to the total number of electrons in the
asymmetric unit. We notice that, because of the total
scattering power nf intervening in the calculation of the
target unitary structure-factor components in equations
(3), there is a degree of freedom in the choice of the
actual number of random scatterers. An estimation of
the optimal number of scatterers should indeed be
possible based on the log-likelihood gain (Bricogne,
1988a,b; Bricogne & Gilmore, 1990) and will indeed be
crucial once the optimal handling of experimental error
variances in the fit against noisy data is implemented.

5.1.2. The fragment. The distribution of electrons, if
any, that is chosen as a known partial structure is
described in terms of a list of Ny, atoms in the asym-
metric unit; for each atom, the positional and dis-
placement parameters x; and f; are given, together
with the appropriate localized core-density functions
o (Ix —x;]) (Stewart, 1980) and the corresponding
core-electronic population coefficients P{*™:

Nirag

4"(x) o 2; [P oo (Ix — x; D]+ Qj(x — x;3 B). (23)
p

where Q; is the (possibly anharmonic) probability
density function used to thermally smear the atomic
density. The multiplicity-weighted sum of the core
population coefficients adds up to ny,,. At present, the
model for the fragment substructure is rigidly fixed and
the values of the parameters that appear in it are kept
equal to those obtained by some multipolar model
refined against suitable X-ray or neutron data; but in
principle this restriction can be lifted and their values
refined during the calculation.

5.1.3. Data normalization and target structure-factor
amplitudes. If a fragment substructure has been speci-
fied, structure factors F™¢ are computed within
VALRAY and read into BUSTER. The target values of
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the unitary structure-factor components are calculated
according to formula (3) and a suitable list of candidate
reflections is selected from those within the resolution
and |E|* thresholds (Bricogne, 1992, 1997) specified, for
subsequent inclusion into the basis set (see §5.1.5)
5.1.4. The nonuniform prior-prejudice distribution. A
nonuniform prior-prejudice distribution m(x) for the
random part of the structure can be specified in a similar
fashion to that illustrated above for the fragment. A list
of atoms contributing to the prior is declared with
positional and displacement parameters together with
the appropriate static atomic monopole density func-
tions and electronic population parameters. In brief:

m(x) Z o7 (x; x;, B, PTO").
]

All-electron runs described in the following section
made use of a NUP of core- and valence-density func-
tions, while valence monopoles only were used when
computing ME distributions of valence electrons in the
presence of core fragments.

The use of static monopole density functions that
have no negative values (see Appendix A) ensure that
m(x) is positive everywhere in the asymmetric unit.
Finally, we mention that, within the present imple-
mentation, aspherical atomic contributions could also be
used to build other kinds of NUP (and/or fragments)
simply by adding multipoles with / > 0, but a preliminary
check would then be necessary in order to ensure the
positivity of those distributions.

5.1.5. Basis-set selection. The elements of the Hessian
matrix of log Z(4) are computed from the appropriate
expectation values of products of structure-factor
components via structure-factor algebra (Bricogne,
1988a). At the outset, all Lagrange multipliers are zero
and the Hessian is based on the prior-prejudice distri-
bution only. Within BUSTER, the Hessian matrix is used
to solve the maximum-entropy equations and to
compute derivatives of the likelihood functions with
respect to structure-factor components. These deriva-
tives serve to choose the reflections whose presence in
the basis set will maximize the sensitivity of the like-
lihood to the structural hypotheses, thus allowing for an
optimal order of inclusion of new basis-set reflections
along the lines described by Bricogne (1993a).

For the application described here, optimal basis-set
selection will only be possible once the variances
entering the likelihood function are on the scale of the
experimental error variances. At the moment, the whole
set of reflections greater than the |E| threshold and
within the resolution range specified are fitted.

5.1.6. Definition of the sampling grid. The sampling
grid for the calculation of the ME distribution depends
on the data resolution and on the values of the Lagrange
multipliers for the reflections, if an estimate for them is
available, for example from some previous run on a
subset of reflections. The grid is always chosen so as to
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minimize aliasing effects that can arise during the
numerical synthesis of the prior-prejudice distribution
and of the exponential factor modulating it, as discussed
in §4.2.

Bandwidth of the prior-prejudice distribution. Thanks
to the algorithm described in Appendix A, the prior-
prejudice distribution can be sampled on arbitrary grids,
so that in principle there would be no need to worry
about its Fourier spectrum as far as generation of the
ME distribution of scatterers in (20) is concerned.
During the course of the calculation, g(x) undergoes
FFT, so that it is important to make sure that the grid
chosen does not lead to severe aliasing errors due to
undersampling of the prior prejudice.

A check on the bandwidth of the prior-prejudice
distribution is performed by calculating the minimum

value of the resolution d;,,, for which the aliasing error:

err = max M , J=1,Ny, (24)
f/( copy d;ax)

is below the numeric threshold of 10~°. The resolution

di .. at which the aliasing error is computed is taken

equal to the maximum resolution of the data set; the f;

are the dynamic atomic scattering factors used to

compute the prior-prejudice distribution.

Bandwidth of the exponential modulating factor. A
loop is performed on reflections in the basis set. For
reflection h;, the smallest value of the index M for which

IM(Kj/|F]'|) = Il(Kj/|Fj|) x 107° (25)
is found. The trial values of the Lagrange multiplier
amplitudes k; are either estimated from the amplitude of
the target structure factors, as explained by Bricogne
(1984), or from some previous calculation. For the
current reflection, M gives the maximum order of
modified Bessel function that gives an appreciable
contribution to the spectrum of the exponential modu-
lation of m(x) in (20). The process is repeated for all
reflections.

The maximum value obtained for d*(Mh;) is then used
together with d;,,, to define the grid according to the
Shannon criterion (Bricogne, 1993b), based on a reci-
procal radius [d*(Mh)),, + diopy )

5.2. Generation of the electron-density distribution

5.2.1. Solution of the ME equations. The ME equa-
tions (8) are solved numerically for the Lagrange
multipliers with the duality algorithm described by
Bricogne (1991a). The starting values for the Lagrange
multipliers are estimated from values at convergence of
a previous run on a subset of the data, if this is available,
or from the residual structure factors computed from the
prior prejudice. The iterative procedure is stopped when
the value of the relative lack of fit,
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NtNe
L.of. = {|: Z (5){ {Ui,target - Ui,ME}
+

S2{I-]i,target - Ui,ME})i|

N,+N, s —1y1/2
X Z | Ui Jtarget | )
1

reaches below the threshold 107°. Convergence is
usually achieved in less than 50 cycles. When the
constraints are given by the noisy data, a different
algorithm is used which maximizes a ‘Bayesian score’
(Bricogne, 1993a; Roversi et al., 1998).

5.2.2. Total density reconstruction. When a fragment is
being used, the total density is reconstructed at the end
of the calculation by sampling the dynamic density of
the fragment ¢g™8(x) on the same crystallographic grid
used to compute g"£(x) and adding the two distributions

onE(X) + nfragqfrag(x)
n+ nfrag .

g (x) = (26)

We mention here that, strictly speaking, the distributions
obtained are positional probability distributions, which
integrate to unity over the unit cell of the crystal. In the
following sections, we shall refer to them as ‘electron-
density distributions’, whose values ine A™ will be
obtained by multiplying g(x) by the nominal average
density in the crystal (p(x)).

5.2.3. ME deformation density maps. Most of the
relevant features of the charge-density distribution can
be elegantly elucidated by means of the topological
analysis of the total electron density (Bader, 1990);
nevertheless, electron-density deformation maps are still
a very effective tool in charge-density studies. This is
especially true for all densities that are not specified via
a multipole model and whose topological analysis has to
be performed from numerical values on a grid.

Conventional implementations of the maximum-
entropy method for charge-density studies do not allow
easy access to deformation maps; a possible approach
involves running a ME calculation on a set of data
computed from a superposition of spherical atoms and
subtracting this map from ¢ME (Lecomte, 1995).
Recourse to a two-channel formalism, which redis-
tributes ‘positive-’ and ‘negative-density’ scatterers,
fitting a set of difference Fourier coefficients, has also
been made (Papoular er al, 1996) but there is no
consensus on what the definition of entropy should be in
a two-channel situation (Bricogne, 1988a; Sakata et al.,
1993; Papoular et al., 1996); moreover, the shapes and
numbers of positive and negative scatterers may need to
differ in a way that is difficult to specify.

Thanks to the particular choice made for the non-
uniform prior prejudice, taken equal to a thermally
smeared superposition of atomic shells, it is for the first
time possible within the present approach to compute
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maximum-entropy deformation maps in a straightfor-
ward manner. Once the Lagrange multipliers 4 have
been obtained, the deformation density is simply

exp[4* - C(x)]

A (x) = M(X){ 700

—1}. (27)

This map can have negative as well as positive features
and yet its calculation involves only that of the positive
map ¢™E, thus providing a simpler alternative to the
two-channel maximum-entropy approach mentioned
above. First applications to noisy data (Roversi et al.,
1998) have confirmed the general usefulness of such ME
deformation maps.

6. ME model studies on Si and Be

In this section, the capabilities of the method in recon-
structing synthetic densities are tested under various
choices for the prior-prejudice distribution, and/or core—
valence partitioning scheme, on synthetic data
computed from a model density. The use of synthetic
data allows a comparison of the electron-density distri-
bution obtained with the model density.

In the first part of the section, we describe the results
of the first model studies performed with BUSTER on
noise-free synthetic data sets for crystalline silicon and
beryllium. Several experimental charge-density studies
have been carried out for both silicon (Spackman, 1986;
Lu & Zunger, 1992; Lu et al, 1993) and beryllium
(Stewart, 1977; Larsen & Hansen, 1984; Iversen et al.,
1995). In particular, the existence of non-nuclear
maxima (NNM for short) in the electron-density distri-
bution for these systems, suggested on the basis of
theoretical (Zou & Bader, 1994) and experimental
(Sakata & Sato, 1990; Takata et al., 1994; Iversen et al.,
1995; Takata & Sakata, 1996) evidence, has been
recently questioned (de Vries, Briels, Feil, te Velde &
Baerends, 1996; de Vries, Briels & Feil, 1996).

6.1. Silicon

A multipolar density was computed for crystalline
silicon by fitting the set of 30 structure-factor amplitudes
measured by Saka & Kato (1986), plus the amplitude of
the reflection F,,, (Alkire et al., 1982).1 The space group
is Fd3m, origin choice 2: one Si atom in the asymmetric
unit at site 8(a), (341); the multipolar refinement was
performed with VALRAY (Stewart & Spackman, 1983).
The model used is similar to the one described in
Spackman (1986), except that no radial parameters were
varied in our case: one isotropic displacement parameter
was refined together with the electronic population

T We recall that F,,, and other & + k 4 [ = 4n + 2 reflections would
be extinct (‘forbidden’) if the thermally smeared electron density of
the Si atom had spherical symmetry.
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parameters for the L- and M-shell monopoles, and for
the symmetry-allowed deformation terms up to [ =4,
namely one octopole and one hexadecapole. The
monopole functions used are those of Clementi (1965),
localized by Stewart (1980). Exponents in the radial
deformation functions r* exp(—ar) of the higher poles
were kept fixed to the values n = 4, @ = 2.354a.u.”".
Scaled population parameters for K-, L- and M-shell
monopoles at the end of refinement amounted to
2.07, 8.27 and 3.66 electrons, respectively. The isotropic

displacement parameter was U = 0.00561 (3) A2
Statistical indices: R(F) = 0.0019, wR(F) = 0.0016,
R(F?) = 0.0031, wR(F?) =0.0033; G.o.f. = 13.00.
Given the relative simplicity of the refinement

performed, this is not the best possible model density for
silicon but it was deemed to be good enough to be used
as a reference, after a preliminary check on positivity of
the valence density in the asymmetric unit (the
maximum-entropy method would not reconstruct
densities having negative values).

Model structure factors were computed from the
multipolar model. Except where otherwise indicated, all
calculations described in the following paragraphs used
a set of 31 synthetic structure factors whose indices
correspond to the ones of Saka & Kato (1986), plus the
forbidden F,,,. This data set is not complete, as 20
reflections out of 51 within the experimental resolution
limit of 0.479 A are missing (but eight of the missing
reflections are forbidden ones). A run performed
against a data set complete up to 0.479 A is described in
§6.1.3.

The thermally smeared model electron density
needed to check the quality of the ME reconstruction in
real space was generated from the multipolar model,
using the algorithm described in Appendix A, on the
same grid used for the maximum-entropy calculation.
Dynamic procrystal densities, used as nonuniform prior-
prejudice distributions, were also generated from the
same multipolar model, setting higher-pole population
coefficients equal to zero. Plane (110) sections of the
dynamic model electron density and of the all-electron
monopole prior prejudice are shown in Figs. 5 and 6,
respectively.

6.1.1. Valence-only calculations. The calculations
described in this section were made by redistributing
valence electrons in the random part and using a frag-
ment of core electrons. All densities were computed on a
144 x 144 x 144 grid. Table 2 reports some of the
significant values of the total model density, together
with the values obtained from the BUSTER runs. The
BUSTER densities have been computed from the sum of
the ME valence and model fragment distributions
according to formula (26).

Two calculations have been performed using a frag-
ment of K- and L-shell electrons and redistributing
3.66 electrons for the M shell. They differ only with
respect to the prior-prejudice distribution. Calculation A

ACCURATE CHARGE-DENSITY STUDIES

used a NUP of M-shell valence monopoles, while
calculation B used a uniform prior-prejudice distribution
(UP). Both calculations successfully reconstruct the
valence (and total) density; Figs. 7 and 8 report the error
maps

Aq(X)C" — qME(X) _ qmodel(x)

in section (110) within the crystal. The error is lower
than 0.05 e A~ in absolute value everywhere. Nuclear
regions are less satisfactorily reconstructed; this is also a
common problem in multipolar studies (Spackman,
1986; Howard et al., 1995). The influence of the prior
prejudice is in this case marginal, the dynamic range of
the M-shell density being around 44.

Two runs using a fragment of K-shell core electrons
redistributed L- and M-shell electrons in the random
part. As was the case for A and B, these calculations
only differ for the choice of the prior-prejudice distri-
bution: C used a NUP of L- and M-shell monopoles,
while D used a uniform prior prejudice. Larger errors
are present in the nuclear region in the map for density
C, Fig. 9. Even larger errors affect density D (Fig. 10).

6.1.2. All-electron calculations. From the calculations
redistributing L- and M-shell electrons, it is already
evident that even the use of a nonuniform prior-preju-
dice distribution cannot prevent errors as high as
02e A~ from appearing in the reconstructed total
density. All-electron runs, in which no fragment is used,
are therefore expected to perform even worse; we stress
that all the MaxEnt distributions obtained so far in the
literature, with the exception of the two-channel defor-
mation densities of Papoular et al. (1996), are precisely
all-electron reconstructions. In particular, we repro-
duced here with calculation E the total density calcula-
tion with a NUP described by de Vries, Briels & Feil
(1996); calculation F, using the UP, is equivalent to the
ones described in Sakata & Sato (1990), Takata &
Sakata (1996) and de Vries, Briels, Feil, te Velde &
Baerends (1996) (compare maps in these papers with the
one in Fig. 11).

As was expected, both E and F densities are heavily
laden with artefacts. This is clearly visible in the error
maps in Figs. 12 and 13. Density at the nuclear position is
underestimated by about 28% (see Table 2), while
series-termination ripples cluster around Si atoms in
low-density regions. The series-termination ripples
originating from atomic centres add up constructively
between bonded atoms in density F to create a false
NNM at position 16(c), the midpoint of the bond. The
density profile along direction [111] in between bonded
Si atoms is shown in Fig. 14. The value of the density at
position 16(c) for calculation F is in excess of about
30%.

6.1.3. Dependence of the results on resolution and data
completeness. The incompleteness of the Saka & Kato
(1986) data set has been recently blamed for the un-
satisfactory features of the ME reconstructions of the
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Table 2. Summary of BUSTER runs on model synthetic data for crystalline silicon

Density 24 x nt 24 X Rgpet G max

A 3.66 (NUP) 10.34 297.384
B 3.66 (UP) 10.34 297.322
C 11.93 (NUP) 2.07 297.576
D 11.93 (UP) 2.07 304.168
E 14 (NUP) 0 297.872
F 14 (UP) 0 215.586
Model 297.434

f n is the number of electrons redistributed at random. i n is the number of electrons in fragment.

985
Grmin CCrin8 Admax Aqin
0.033 0.999 0.014 —0.049
0.032 0.999 0.022 —0.112
0.032 0.999 0.142 —0.172
0.023 0.9995 6.734 —0.955
0.032 0.999 0.438 —0.200
0.031 0.999 8.787 —81.847
0.032, (1.0) - -

§ Minimum value of correlation

coefficients between the total reconstructed density and the model density; the correlation coefficients were computed in sections along ¢ in the

cell. T Aqe"(x) = qME(X) — qmndel(x)'

total electron density in silicon (Takata & Sakata, 1996).
In that work, a complete data set was obtained from the
one of Saka & Kato (1986) by taking out the 844 and 880
reflections, but in doing so the resolution of the data set
was also decreased from 0.479 to 0.581 A; it is therefore
difficult to disentangle the combined effect of resolution
and completeness on the quality of the resulting map.
We have already shown here that valence-only
calculations (A and B) can reconstruct the model
density within an acceptable error: this is true in spite of
the data-set incompleteness. To provide further
evidence for the fact that artefacts observed in Takata &
Sakata (1996) do not arise from data incompleteness but
mainly from the inadequacy of the method to recon-
struct total densities without a structural model for the
core, we have repeated a calculation similar to the one
described by de Vries, Briels, Feil, te Velde & Baerends
(1996): BUSTER has been run against a set of 42
synthetic data that is complete up to 0.479 A, except
for the nine forbidden reflections. This calculation is
labelled G. The electron-density profile along [111] is
shown in Fig. 14. The false peak at the Si—Si midpoint is
still present, although the value of the density is now
correct within 3%. The value of the density at the

Fig. 5. Silicon. Dynamic model density g™%!(x) in section (110). Map
7.68 A (along [110], horizontal) x 5.43 A (along [001], vertical).
Contours: from 0.0 to 2.50 ¢ A2, step 0.1 ¢ A3, g(x)™*! = 0.032;
g(x)™% = 29743 ¢ A3,

nucleus is 227.94 ¢ A7, still off by as much as 23%.
Greater data completeness does improve the quality of
the map but does not eliminate artefacts.

To check the resolution dependence of the results, an
all-electron calculation was also performed from a
uniform prior, fitting the 125 allowed reflections (plus
the forbidden 222) out of the 155 up to 0.317 A reso-
lution. The electron-density profile is the one labelled H
in Fig. 14. The value of the electron density is close to
that for calculation G, but a broad modulation is still
present, creating a very shallow maximum at the bond
midpoint. It is seen that even extension of the data set to
very high resolution cannot give back the correct
topology at this position.

6.2. Beryllium

A model density was computed with VALRAY for
crystalline beryllium by a fit to 58 structure-factor
amplitudes measured at room temperature by Larsen &
Hansen (1984). The space group is P6,/mmec, one Be
atom in the asymmetric unit at site 2(c), (331). The
multipolar model applies anharmonic corrections to the
temperature factor, expansion of the atomic density up

to / = 4, and single exponential deformation functions.

Fig. 6. Silicon. All-electron NUP of spherical atoms m(x) = g!4M(x) in
section (110). Map size and contouring level as in Fig. 5.
Moy (%) = 0.062; m,, (x) = 297.360e A~
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Harmonic atomic displacement parameters and elec-
tronic population parameters for the K-shell and L-shell
monopole functions and for the symmetry-allowed
quadrupole, octopole and hexadecapole were varied.
Coefficients up to fourth order in the cumulant expan-
sion of the the temperature factor were kept fixed to
values obtained from the Gram—Charlier coefficients in
Iversen et al. (1995). Convergence was reached to
statistical indexes: R(F) = 0.0033, wR(F) = 0.0035,
R(F*) = 0.0069, wR(F?) = 0.0069; G.o.f. = 1.431.

At variance with the silicon study described above,
‘idealized’ core and monopole population parameters
equal to 2 electrons were then used to compute the
synthetic density, while other parameters retained the
values from the above refinement. Positivity of the
valence density obtained with this model was checked
on a uniform grid in the asymmetric unit. The model
dynamic density was initially generated on a
64 x 64 x 96 grid; this number of divisions subsequently
proved insufficient to sample the density at the nucleus,
in that the nuclear position does not fall on any of the
grid points: the interpolated value is too low by 1.5%
with respect to a model density sampled on a
120 x 120 x 192 grid.f Sections in plane (110) of the
model dynamic density and of the all-electron prior-
prejudice distribution obtained by core and valence
monopoles are shown in Fig. 15.

58 structure factors were calculated up to the
experimental resolution limit, 0.417 A. Table 3 lists some
of the significant quantities for all the BUSTER calcu-
lations performed against this data set, together with the
values relative to the model density.

6.2.1. Valence-only calculations. Against this synthetic
data set, two valence-only calculations were performed,
using a fragment of K-shell electrons and redistributing
the L-shell electrons with a nonuniform prior prejudice
of L-shell monopoles (calculation A) and with a uniform
prior prejudice (calculation B). All ME valence densities
were generated on a 64 x 64 x 96 grid.

Fig. 16 shows the error maps in the (110) section of
the crystal for calculations A and B. The maps are
devoid of features below 0.005e A~ except in the
nuclear regions where the error remains below
0.03 e A7 in absolute value anyway. For the beryllium
valence density, whose dynamic range is around 3,
reconstruction is satisfactory even when a uniform prior-
prejudice distribution is used.

6.2.2. All-electron calculations. The total structure
factors were now used as target values in two all-elec-
tron calculations modulating a nonuniform prior preju-
dice of K- and L-shell monopoles (C) and a uniform
prior prejudice (D). Calculation D corresponds to the

+ This is a general problem in ME studies, where the sampling of the
density at the nuclear position can in some cases only be performed by
choosing the grid appropriately (see Carvalho et al., 1996; Ishibashi et
al., 1994).
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one described by Iversen et al. (1995); the same work
mentions a calculation equivalent to C; more recently,
both types of calculation have been described by de
Vries, Briels & Feil (1996). Reconstruction of the total
density by modulation of the uniform prior-prejudice
distribution required a finer grid in calculation D
(120 x 120 x 192).

From the section of the electron density in Fig. 17(b),
it is already apparent that D does not reconstruct the
model density well. Density D underestimates the value
of the density at the nucleus by about 3.8% and has
wiggly contours in low-density regions. In particular,
there is accumulation of charge at position 2(d) in the
basal plane; this position is at the bipyramidal space
between the two tetrahedral cavities above and below
the basal plane, along the ¢ axis. This point is the one
marked with an asterisk in the section of the D density
of Fig. 17(b). It is at this position that one of the NNM’s
has been found by Iversen et al. (1995).

Fig. 18 shows the error maps in the (110) section of
the crystal for calculations C and D. Concentric shells of

Fig. 7. Silicon, Calculation A: Ag(x)™™ in section (110). Section
7.68 x 5.43 A ([001]). Contours: —1.5t0 0.49 e A, step 0.01 e A7,
Ag(x) = —0.049; Ag(x)t, = 0.014e A2,

max

err

Fig. 8. Silicon. Calculation B: Ag(x)™" in section (110). Map size and
contour  levels as in  Fig. 7. Aq(x)mi, = —0.112;
Agq(x)ir =0.022e A7,
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positive and negative residuals peak around the atoms.
Notice that for calculation D the error in the nuclear
region (—1.835 e A7) is below the minimum contouring
level and was not contoured.

The density around position 2(d) was more closely
inspected by plotting total electron-density profiles
through this point along the [110] and [001] directions
(Fig. 19). Abscissaec in both graphs are fractional
distances, z along the ¢ axis and d/d, along the longer
base diagonal of the hexagonal cell, respectively, for the
[001] and [110] directions. In the plot at the top of Fig.
19, the density profile along [001] clearly shows that
along this direction site 2(d) is a maximum in all
densities but, while reconstruction is accurate for
calculations A-C, density D has an excess of about 1%
at site 2(d) (z = 3). The bottom plot shows that density
D at site 2(d) (d/d, =3) is not only too high but also
presents the wrong curvature in the basal plane: this
point erroneously becomes a maximum along [110] also.
An artificial NNM is created at site 2(d) by the redis-
tribution of core electrons in the random part with the
uniform prior.

These results confirm those reported by de Vries,
Briels & Feil (1996) but give further insight about the
origin of the spurious details observed, which depends
on the amount of missing structure rather than on the
use of a uniform prior-prejudice distribution. In fact, for
valence densities having such a small dynamic range as
that of beryllium, the core-valence partitioning scheme
first implemented in BUSTER allows for reconstruction
of the density from noise-free data even with a uniform
prior prejudice (calculation B).

6.2.3. Further tests. NNM reconstruction. A model
density containing a NNM at position 2(d) was gener-
ated with VALRAY by placing an H atom at (11), with
a monopole population of 0.005 electrons and an
isotropic displacement parameter U, = 0.03 A, Syn-
thetic structure factors up to 0.417 A resolution were

err

Fig. 9. Silicon. Calculation C: Ag(x)
and contour levels as in Fig 7.
Aq(x)im =0.142e A2,

in section (110). Map size
Aq(oSL, = —0.169;
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used in a valence-only calculation similar to A, with a
fragment of Be K-shell electrons and a nonuniform prior
prejudice of Be L-shell electrons without the H atom.
The total electron-density profile along [110] at z = 1 is
shown in Fig. 20, together with the model density.
BUSTER was clearly able to detect the presence of the
NNM at site 2(d).

Use of a biased prior-prejudice distribution. In a sense,
the dependence of the method to biased prior-prejudice
distributions has already been tested when performing
calculations B and D, with the uniform prior prejudice
for the valence and total density, respectively. We have
also tested the bias from a nonuniform prior obtained by
a superposition of Be L-shell monopoles plus an H atom
placed, as described above, at site 2(d). This biased
valence prior prejudice has been used in a calculation
(F) with the usual K-shell core fragment for Be and Be
L-shell valence electrons in the random part (like
calculation A).

Fig. 21 shows profiles along the [110] direction at
z ::11 for the valence density of the model, the ME
valence density of calculation F and the biased valence
prior. The valence ME distribution from calculation F is
virtually indistinguishable from that of the model and
correctly shows no local maximum at site 2(d): the false
detail present in the prior prejudice is wiped out on the
basis of the information contained in the observations.

Fit to high-resolution data. A synthetic data set of 116
reflections complete up to 0.317 A has been computed
from the model density of beryllium and an all-electron
run performed, modulating a uniform prior prejudice, as
in calculation D. This calculation is labelled G. The grid
used was 144 x 144 x 240.

Fig. 22 shows the (110) section of the resulting ME
distribution. The corresponding total electron-density
profile is shown in Fig. 23 together with the model
density profile. The artificial NNM at site 2(d) has
disappeared but the density has distorted contours. This

Fig. 10. Silicon. Calculation D: Ag(x)™ in section (110). Map size
and contour levels as in Fig. 7. Agq(x)m = —0.903;
Ag(x)"" = 6.735¢ A~>. Maximum and minimum values exceed
the traced contour levels.
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Table 3. Summary of BUSTER runs on model synthetic data for crystalline beryllium

Densities were sampled on a 64 x 64 x 96 grid, except where otherwise stated.

Density 24 x nt 12 X ngyek Qmax

A 2 (NUP) 2 49.729
B 2 (UP) 2 49.721
C 4 (NUP) 0 49.775
Dtt 4 (UP) 0 48.674
Model 242 49.733%%
Model# 242 50.496

T n is the number of electrons redistributed at random. i n is the number of electrons in fragment.

Grmin CCrind Ag Agmin
0.180 0.999 0.003 —0.016
0.180 0.999, 0.004 —0.024
0.180 0.999 0.030 —0.010
0.179 0.997 0277 —1.835
0.180 (1.0) - -
0.180 (1.0) - -

§ Minimum value of correlation

coefficients between the total reconstructed density and the model density; the correlation coefficients were computed in sections along ¢ in the

cell. 9 Ag™(x) = qME(x) _ qmodel(x)'
position.

is in keeping with the results shown for the all-electron
run for silicon and confirms that, even in the presence of
very high resolution data, all-electron runs with a
uniform prior-prejudice distribution cannot reconstruct
the atomic cores and low-density regions of the struc-
ture.

6.3. Discussion

6.3.1. The ‘frozen-core approximation’. The use of
core fragments represents an improvement over the
redistribution of all of the electrons in the random part:
the latter approach would carry over to biasing the final
picture by a deep ignorance about the existence of
atomic cores in the crystal. The validity of this ‘frozen-
core approximation’ can be questioned but this is a
general problem in charge-density studies, which also
assume that the static picture of the core density be
unaltered on passing from gas phase to the solid, so that
electron-density distributions for the atomic core can be
transferred by ab initio calculation for the isolated
atoms.

Evidence of the contrary is sometimes found in the
literature. For example, a 0.5% expansion of the atomic

Fig. 11. Silicon. Calculation F: total density. Map size and contour
levels as in Fig. 5. g(x)5, = 0.032; q(x)-,, =215.576e A~>.

‘min max

+1 Density on a 120 x 120 x 192 grid. #f Grid is not adequate to sample the density at the nuclear

core and an enhanced thermal vibration of the same
core density with respect to the valence density have
been found for Si (Lu et al., 1993). Core expansion in
solid beryllium has also been advocated to explain the
higher values of the atomic displacement parameters
obtained from a fit to high-order X-ray data as
compared with the values from a neutron refinement
(Larsen & Hansen, 1984). Evidence for the need of core
deformation functions was also obtained for beryllium
by Stewart (1977). Recently, a 0.182 A neutron diffrac-
tion study on MnF, has given indirect confirmation of a
polarization of the inner shell of the F atoms owing to
antiferromagnetic order in the crystal (Jauch et al,
1996).

Usually, either the data do not contain information
about the core structure or, even when they do, the
parameterization of the core-electron distribution is not
flexible enough to model it. In fact, as pointed out by Lu,
Zunger & Deutsch (1993) in their study of crystalline
diamond, silicon and germanium, the conventional
choice for radial deformation functions R,(r) is such that
R#O(r =0) =0, so that, at the nuclear positions, the
only contributions to the deformation density come
from the tails of the radial functions of higher poles

Fig. 12. Silicon. Calculation E: Ag(x)*". Map size and contour levels as
in Fig. 7. Ag(x)5, = —0.187; Ag(x)"" = 0.438e A™>.

min 'max
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(I > 0) centred at neighbouring nuclei. The flexibility of
the model used to describe the core regions is therefore
limited, attention being focused on the valence density.

Obviously, the picture for the ME valence-electron
density depends at present on the description given for
the fragment, in terms of the scale factor, core monopole
populations and positional and atomic displacement
parameters. Moreover, the present implementation can
correct the model adopted for the atomic core only by
the modulation introduced by the non-negative tails of
the ME valence density in the same region.

6.3.2. Various choices for the prior prejudice. The
problem remains of assessing to what extent the results
are dependent on the particular nonuniform prior
chosen. Hansen & Wilkins (1996) have recently tried to
generalize the maximum-entropy approach by introdu-
cing the concept of ‘distributions of prior-prejudice
distributions’.

In the present approach, the choice of a prior distri-
bution of electrons is not really different from other
structural hypotheses, such as phases to be attached to
the experimental structure-factor amplitudes or par-
ameters in the model for the partial structure and could
therefore be subjected to likelihood tests against the
data.

A range of possible departures of the distributions of
the valence electrons from mi(x) can be explored; the
possible choices for m(x) can be specified in a variety of
ways, such as explicit phase assignments for the ampli-
tudes of the worst agreeing structure factors or various
modulations of m(x) by parameterized multipole terms.
The ME calculations, in the manner in which they have
been used to improve on direct methods, will give log-
likelihood gains for each of these hypotheses with
respect to the null hypothesis: a statistical analysis of
these will show whether the data point significantly
towards any of them. Other types of hypotheses might
consist of assuming certain values of multipole coeffi-

Fig. 13. Silicon. Calculation F: Ag(x)"". Map size and contour levels as
in Fig. 7. Ag(x):" = —81.856; Aq(x)" = 8.508e A™>. Maximum

'min max
and minimum values exceed the traced contour levels.
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cients to describe the distribution of a subpopulation of
valence electrons; only the remaining valence electrons
would be dealt with by the maximum-entropy method,
with a revised m(x), to evaluate the log-likelihood gains;
the multipole coefficients could then be refined by
maximizing that gain. This would allow for the model-
ling of negative valence densities, which might be
required given the core-valence partitioning scheme
adopted; negative valence densities cannot be obtained
by ME distribution, but could be obtained by maximum-
likelihood refinement of multipolar parameters in the
NUP.

This new approach to multipolar refinement, using
maximum likelihood rather than least squares as a
refinement criterion, has the advantage that it can deal
not only with measurement errors on amplitudes but
also with the uncertainty of phase values in the case of
noncentrosymmetric structures. An illustration of the
use of likelihood in valence-density reconstruction of a
noncentrosymmetric structure was given by Roversi et
al. (1998). It is clear though that, if insufficient infor-
mation is contained in the data, there might be no means
of discriminating between several possible choices for
m(x); it is nevertheless encouraging that tests with
biased m(x) show some ‘robustness’ with respect to the
choice of m(x), at least on noise-free data (see §6.2.3).

6.3.3. The experimental error variances. Within the
computational scheme described here, the use of one
Lagrange multiplier per structure-factor component can
naturally prevent the uneven distributions of residuals
observed in the case of a single x? restraint. As pointed
out by Carvalho er al. (1996), the handling of one

0.75

0.651

)

-3

0.551

Total density (e A

0451

03518, ‘ ‘ — .
4.1 43 4.5 4.7 4.9 5.1 53
Distance from (—3/8 —3/8 —3/8) along [111] (A)

Fig. 14. Silicon. Total electron-density profile along [111] in between
two bonded Si atoms. The reconstructed electron-density profiles
for calculations A-D (long-dashed lines) all closely follow the one
for the model electron density (solid line). The profiles for
calculations F, G and H (dotted and dot-dashed lines) show artifical
charge accumulation at the midpoint of the bond. The lower curve is
the density profile for the nonuniform prior prejudice of K-, L- and
M-shell monopoles used in calculation E.
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constraint per datum is a very demanding numerical
task; in our experience, the duality algorithm imple-
mented into BUSTER (Bricogne, 1991a) has proven
very robust in handling up to 2600 individual constraints.

All calculations described here have been carried out
on noise-free synthetic data, for which the exact
targeting of structure-factor amplitudes is of no concern.
Dealing properly with experimental error variances
needs assessment of the effective number of scatterers
to bring the variances computed from the random
scatterer model on the scale of the observed ones. Each
observation is then fitted within the experimental error.
A preliminary report about the first results obtained

()

Fig. 15. Beryllium. Model dynamic density in section (110). Map size:
397 A ([110], horizontal) x 3.58 A ([001], vertical). Map centre at
111y Contour levels: from 0.180 to 0.312 ¢ A3, step 0.003 ¢ A~
(a) Total dynamic density. (b) Procrystal dynamic density.
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with BUSTER on noisy data is being published (Roversi
et al., 1998).

7. Concluding remarks

The observations presented here are in keeping with the
general notion that the maximum-entropy method is
best understood as a method for testing hypotheses
against the experimental data, in the presence of some
prior knowledge. In a crystallographic context, the
Bayesian viewpoint on crystal structure determination
prescribes the use of the maximum-entropy method to
perform iterative testing of structural hypotheses and
allow model updating (Bricogne, 1988a, 1997).

(a)

(b)
in section (110) for beryllium. (a) and (b):

err

Fig. 16. Error map Ag(x)
calculations A and B, respectively. Map size as in Fig. 15. Contours
from —0.0306 to 0.0294 ¢ A~>, step 0.0053 ¢ A
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From this viewpoint, it is possible to rationalize the
results of the different types of charge-density ME
calculations discussed so far. In each case, the calcula-
tion provides an answer whose quality is commensurate
with the degree of adequacy or inadequacy of the null
hypothesis made; these null hypotheses can be ranked in
increasing order of information content:

(i) Many of the MaxEnt calculations described in the
literature ignore any knowledge of the atomicity of
structures other than that conveyed by the choice made
for the target structure-factor phases (see §2): a uniform
prior is used, and all electrons are redistributed under
the maximum-entropy condition. The resulting distri-

)

\
\
\‘ N> >

Fig. 17. Beryllium. ME total dynamic densities. (a) Calculation A, the
density is reconstructed as in formula (26) by a core fragment and a
valence ME map with m(x) = ¢'AM(x). (b) Calculation D, all-
electron ME map obtained with a uniform prior prejudice. Map size
and orientation and contouring levels as in Fig. 15.
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bution already contains a clear picture of atoms, with
atomic cores and bonding density regions; but the
topology of these MaxEnt densities will often be wrong
because the missing structure is not adequately
modelled by random independent constituents (Roversi,
Irwin & Bricogne, 1996).

(ii) Within the computational scheme described in the
course of this work, the available information about the
atomic substructure (core + valence) can be taken into
account explicitly. In the simplest possible calculation, a
fragment of atomic cores is used and a ME distribution
for valence electrons is computed by modulation of a
uniform prior prejudice. As we have shown in the noise-

err

Fig. 18. Error map Ag(x)™" in section (110) for beryllium. Calculations
Cand D. Map size and orientation as in Fig. 15. The contouring level
scheme is the same as the one in Fig. 16; in the error map for
calculation D, too large a negative error in the nuclear region gets
truncated.
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free calculations on a-glycine described in §4.1.1, the
method will yield a better representation of bonding and
nonbonding valence-charge concentration regions but
bias will still be present because of Fourier truncation
ripples and aliasing errors.

(iii) Full atomicity can be incorporated into the
available prior information using a nonuniform prior
prejudice of spherical-valence shells, together with the
atomic core fragment. The test presented in §4.1.1 shows
that it is possible to correctly reconstruct the aspherical
features in the density, in the absence of experimental
noise. At this stage, no stereochemical knowledge has
yet been used, other than that implicitly conveyed by the
geometry of the nuclear framework. The presence of the
experimental noise would soften the constraints
imposed by the observations, so that multiple-order
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Fig. 19. Beryllium. Total dynamic electron-density profiles along [001],
going through special position 2(d). Abscissae in both graphs are
fractional distances. (a) [001] direction, z along the ¢ axis,
x=1,y=2 (b) [110] direction and d/d, along the longer base
diagonal of the hexagonal cell, z =1 Solid line: model density.
Long-dashed line: calculations A and B. Dot-dashed line: calcula-
tion C. Density for calculation D (dotted line) shows excess density

and the wrong topology at position 2(d).
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bonds and very sharp nonbonded charge concentration
features will still be deflated (Roversi et al., 1998).

(iv) The next update of the null hypothesis would
incorporate a zero-order description of bonding in terms
of a prior prejudice of ‘standard’ chemical groups. The
transferability of standard multipolar parameters from a
peptide databank have already been tested and proven
effective in improving refinement of small proteins
(Pichon-Pesme et al., 1995): an additional test of the
extent to which standard deformation terms are trans-
ferable from one system to another would be provided
by building aspherical priors from deformation-density
databases. The ME map then will tell us about the subtle
differences induced in formally equivalent chemical
bonds by conjugation, stacking and other intra- and
intermolecular interactions. To achieve this degree of
accuracy, the refinement of structural parameters
present in the model adopted for the fragment should
proceed together with the ME redistribution of the
valence electrons.

We have described in this paper the first imple-
mentation of this Bayesian approach to charge-density
studies, making joint use of structural models for the
atomic core substructure and ME distributions of scat-
terers for the valence part. Used in this way, the
maximum-entropy method is ‘safe’ and can usefully
complement the traditional modelling based on finite
multipolar expansions. This supports our initial proposal
that accurate charge-density studies should be viewed as
the late stages of the structure determination process.

APPENDIX A
Dynamic electron density by aliasing

BUSTER reconstructs the total electron density as
shown in formula (26): the prior-prejudice distribution
and the fragment density need to be sampled on the
same grid upon which the ME calculation is performed.

Both the prior-prejudice distribution and the frag-
ment density are model dynamic densities. If Gaussian-
type basis functions are used to expand the static atomic
densities, the sampling of model dynamic densities on
crystallographic grids can be performed using an
analytical expression for the thermally smeared density
in real space (Stewart & Flensburg, 1998). No tractable
analytical form exists for the thermally smeared density
when the multipolar expansion for the static atomic
density is a linear combination of Slater-type functions,
as is the case in the majority of charge-density studies to
date.

For this reason, dynamic densities are usually sampled
numerically on a grid by Fourier transformation of their
structure factors. The resulting density is accurate
provided two simple conditions are met: all structure
factors greater than the numerical threshold have to be
included in the sum, in order to avoid series-termination
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Table 4. Summary of structures for which periodized structure factors were generated and dynamic density computed

Structure Space group Formula
a-Glycine P2,/c C,HsNO,
L-Alanine P2,2,2, C;H;NO,
Citrinin P2,2,2, Cy3H 4,05
Pyrope la3d Mgy /4Aly6Si1,,0
Triglycine P1 2(CsH1N30y4)
HMT 143m CuaHi Ny

Be P6,/mmc Beyin

Diopside C2/c Ca;,Mg;,S10;
Si Fd3m Sii/n4

Atoms per cell T (K) 1/dy (A)
40 23 0.436
52 23 0.463
128 20 0.438
160 30 0.438
96 120 0.464
44 298 0.452
2 298 0.417
40 298 0.434
8 298 0.480

ripples; the sampling grid must be fine enough to
accommodate the resolution of the same nonzero
structure factors and prevent aliasing errors (Brigham,
1974) in the sampled density (Shannon, 1949; Bricogne,
1993b).

As mentioned above, the ME grid is chosen on the
basis of the prior-prejudice bandwidth and on the
amplitudes of the Lagrange multipliers entering the
exponential model of the density. This grid might not be
fine enough to adequately sample the fragment density
by simple numerical Fourier transform of its nonzero
structure factors: the latter might extend to a resolution
well beyond the one of the data set fitted. It is usually
not possible to sample fragment densities on the ME
grid by simple FFT of its Fourier coefficients.

This problem could be overcome by choosing the ME
grid on the basis of the Shannon grid needed to sample
the fragment density. This would demand additional
computational effort, especially when dealing with low-
temperature data sets for crystals containing some heavy
atom, whose core electrons scatter to very high order.
Alternatively, one could sample the fragment density by
FFT of its nonzero Fourier coefficients on its Shannon

0297
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Fig. 20. Reconstruction of a NNM arbitrarily placed at site 2(d) in the
beryllium cell. Solid line: total model dynamic electron-density
profile along [110] in the basal plane at z = 1. Long-dashed line:
calculation E. Dashed line: spherical-atom dynamic density. The
prior prejudice was built from spherical beryllium valence shells
with no knowledge of the density at the special position.

grid, and then interpolate it on the coarser grid used for
the ME calculation.

A third solution is the one implemented in the course
of this work, and it is described in this Appendix. The
method is very general and allows for error-free
sampling of model densities on any grid, no matter how
coarse: it is based on the particular instance of the
convolution theorem known as the duality between
periodization and sampling (Bricogne, 1993b).

The most common example of this duality belongs to
the basics of crystallography, whereby the periodic
electron density of the crystal is expressed as the
convolution of the electron density in the unit cell with a
lattice distribution of Dirac § functions having the
translational symmetry of the crystal lattice itself:
sampling of the Fourier transform of the electron
density in the cell then occurs at the nodes of the dual
lattice, giving nonzero structure factors only for integer
Miller indices.

If the réles of the real and reciprocal space are
reversed in the latter example, it is seen that numerical
Fourier transform of a set of structure factors, rendered

0.35
030 o
& 025 1
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z
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Fig. 21. Beryllium. Calculation F: the prior-prejudice distribution
includes a NNM at site 2(d) which was not in the model. Dynamic
valence-electron-density profiles along [110] in the basal plane at
z = 7. Solid line: model valence density. Dot-dashed line: calcula-
tion F. Dashed line: nonuniform prior of spherical valence shells +
NNM at site 2(d). The false detail in the prior-prejudice distribution
is correctly wiped out in the ME reconstruction.
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periodic by a lattice reciprocal to an arbitrary real-space
lattice-grid, will cause the density to be sampled on the
same grid in real space. To sample any model density on
a given grid, it is therefore sufficient to periodize its
Fourier coefficients along a grid reciprocal to the given
sampling grid, and to Fourier transform the set of per-
iodized structure factors.

This computational scheme had already been imple-
mented into BUSTER to effectively sample macro-
molecular envelopes blurred in reciprocal space by
means of an overall temperature factor (Bricogne,
1994). We describe here the implementation of the
algorithm within the computer program VALRAY
(Stewart & Spackman, 1983), which has enabled the
sampling of prior-prejudice distributions and fragment
densities on the grids chosen for the BUSTER ME
calculations.

Let A* be a reciprocal lattice consisting of the vectors

&

& = hNXa" 4+ kNYb* + INZc",
where (NX, NY, NZ) are three positive integers and a*,
b* and ¢* are the basis vectors of the reciprocal lattice of

the crystal. Let R* be a lattice distribution built from the
A* lattice:

R* = Y §().
EeA*
R* is used to periodize the structure-factor distribution
F:

Fli* — R* % F. (28)

The convolution in (28) renders F** periodic under
translations by vectors in A*:

N

)

N

i

(

W

Fig. 22. Beryllium. Calculation G. Dynamic total density. Fit to 116
model structure factors up to 0.317 A. Map size and orientation and
contour levels as in Fig. 15.
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FaliaS(h) — _L,iFaliaS(h) — FaliaS(h _ 6)

If we now call R the lattice distribution dual to R,
R = F[R*](x), we can write

R=2 dx),

XeA
where the vectors x belong to the A lattice:
x = (m/NX)a+ (n/NY)b + (p/NZ)e m,n,p € Z.

The Fourier transform of the periodic distribution Fi
can be written, making use of the convolution theorem,
as

FIF"™](x) = F[R* x F](x)
= (NX)(NY)(NZ)|det A*| 'R - F[F]x
= (NX)(NY)(NZ)|det A*[7" 3~ p°(x)3(x)

= P(x)8(x)

xeA

(29)

(A* is the matrix whose columns are the basis vectors of
the A* lattice). It is apparent that the Fourier transfor-
mation samples the cell electron density at the nodes of
the A lattice.

The convolution with the lattice of delta functions in
(28) requires in principle an infinite number of trans-
lates. In practice, it is sufficient to take into account only
those structure factors that are above some numerical
precision threshold; in this work, structure-factor
amplitudes lower than 107 have been neglected. In fact,
the calculation begins by assessing a resolution limit past
which all structure factors can safely be assumed to be
negligible, based on the known fall-off of atomic scat-
tering factors with resolution. The resolution limit can
be expressed in terms of maximum Miller indices for
structure factors to enter the sum. Then,

0.280 -

0.278 |-

0.276 -

0274 -

Total density (¢ 15(3)

0.272 -

0.270 =

0.268

0 1/3 12 213 1
Distance from (0,0.1/4) along [1-10] (d/d)

Fig. 23. Beryllium. Total dynamic electron-density profile along [110]
in the basal plane at z =% Solid line: dynamic model density.
Dotted line: calculation G.
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Table 5. Resolution limits in the aliasing sum (30) for the structures in Table 4

Structure NX, NY, NZt d?‘" TF (A):i:
a-Glycine 64, 144,72 0.062
L-Alanine 64,128, 64 0.063
Citrinin 144,76, 144 0.066
Pyrope 120, 120, 120 0.039
Triglycine 120, 128, 48 0.082
HMT 76,76, 76 0.179
Be 64, 64, 96 0.082
Diopside 96, 96, 64 0.061
Si 144, 144, 144 0.083

dmn (A)§ Hpoor Kinaxs Linax No. of copies
0.083 65, 142,71 8
0.085 69, 144, 68 24
0.090 147, 80, 135 16
0.047 245,245,245 48
0.099 117, 148, 48 16
0.279 25,25,25 4
0.103 18, 18,29 4
0.069 141,129, 76 28
0.113 52,52, 52 4

+ Number of points along reciprocal axes for the periodizing lattice A*. The grid is the one needed in BUSTER for a valence-only ME

calculation.
dynamic scattering factors fall below 107,

F**(h) = R*  F(h, k, [)
Hpox  Kmox L

= 2

m=—Hpax n==Kmax P==Lmax

x F(h — mNX, k — nNY, [ — pNZ).  (30)

Real and imaginary parts of aliased structure factors are
only needed in a reciprocal-space prism having
dimensions (NX,NY,NZ) because of the periodic
nature of the F'*: moreover, the Hermitian symmetry
of the structure factors allows a reduction of the
number of F** by a factor of two. The Miller indices
in (30) are therefore being varied in the ranges
0<h<NX/2,0<k<NY—-1,0<[I<NZ-1. The
density is then synthesized by FFT from the F** values.

The number of periodizing vectors needed in the sum
in (30) depends on the overlap between the translates of
the nonzero structure factors and the original copy
around (000). Four copies suffice when the grid chosen is
fine enough to satisfy the Shannon criterion for the
density to be sampled. In this case, there is no overlap in
reciprocal space between the original copy and any of
the translates; the aliasing procedure is tantamount to
sheer Fourier transform of the nonzero set of structure
factors. Whenever the grid is too coarse to allow proper
sampling by Fourier transform, the aliasing procedure
will run over more than four translating vectors. Table 4
lists the structures used to test the implementation and
Table 5 reports typical values obtained.

This work was partially supported by an International
Research Scholarship from the Howard Hughes Medical
Institute (to GB) and by a collaborative research grant
from Pfizer Central Research (to GB). Digital Equip-
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1 Resolution threshold past which all atomic temperature factors fall below 107,
¢ Number of periodizing lattice vectors entering the sum in (30).

§ Resolution threshold past which all atomic
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